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Synchronization of Oscillators Coupled Through
Narrow-Band Networks

Jonathan J. Lynch and Robert A. York, Senior Member, IEEE

Abstract—The ability of two coupled oscillators to synchronize
depends critically on the coupling network. Previous analyses have
accurately predicted the performance of quasi-optical microwave
oscillator arrays for both weak and strong coupling, but have
been limited to coupling networks with bandwidths considerably
larger than the locking bandwidths of the oscillators. In this paper,
the authors develop a method for deriving a suitable system of
nonlinear differential equations describing the oscillator ampli-
tude and phase dynamics using a generalization of Kurokawa’s
method. The method is applied to the case of two Van der Pol
oscillators coupled through a resonant network for a wide range of
coupling strengths and bandwidths. Simple approximate formulas
are developed for the size of the frequency locking region as
functions of the basic circuit parameters.

Index Terms—Injection locking, oscillators.

I. INTRODUCTION

I N THE authors’ previous work, coupled microwave oscil-
lators have been modeled as simple Van der Pol oscillators

coupled through either a resistive network or a broad-band net-
work that produces a constant magnitude and phase delay be-
tween the oscillators [1]. This treatment provided a satisfactory
model for many applications, and the simplicity of the equations
allowed one of the authors to conceive and design an electroni-
cally steerable transmitting array requiring no electronic phase
shifters and only two adjustment ports [2]. In another paper, this
simple theory was extended to include the effects of an arbitrary

-port broad-band coupling network described by a set of-
or -parameters [3]. This analysis is useful in showing the ef-
fects of the coupling network parameters, but is limited to cases
where the coupling network bandwidth is much greater than the
oscillator bandwidths. The primary reason for this limitation is
that the analysis relies on an approximation of the frequency de-
pendence of the coupling network-parameters that is accurate
only in the immediate vicinity of the frequency about which the
approximation is made. The following analysis utilizes more ac-
curate approximations and extends its applicability to the case
of extremely narrow-band coupling. Using this theory, we are
able to model the dynamics of oscillators coupled through many
types of circuits, in particular, high–cavities. In this paper, we
will first develop the theory and then apply it to the simple case
of two Van der Pol oscillators coupled through a resonant net-
work.
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Fig. 1. Two self-sustained oscillators coupled through a resonant network.

II. DYNAMICS OF TWO OSCILLATORS COUPLED THROUGH A

RESONANT CIRCUIT

For oscillators coupled through a broad-band linear network,
the dynamic equations for the amplitudes and phases of each
oscillator can be represented in a highly compact form for any
number of oscillators and complexity of the network, as shown
in [3]. If the frequency variations of the coupling network-pa-
rameters are significant compared to the bandwidth of the os-
cillators, the “broad-band” assumption breaks down and the re-
sulting dynamic equations can be highly inaccurate. This makes
sense when one considers that narrow-band coupling networks
are composed of inductors and capacitors (or at least can be
modeled as such) that raise the order of the overall system. One
would expect that correct modeling of such systems requires ad-
ditional sets of differential equations to accurately describe the
dynamics of the amplitudes and phases of the coupling param-
eters. This is, in fact, the case, and we will show how to derive
these differential equations directly from the network-param-
eters.

The theory is exemplified using a circuit composed of two
parallel resonant circuits containing nonlinear negative resis-
tance devices and coupled through a series resonant circuit, as
shown in Fig. 1. The oscillators are identical, except for their
resonant frequencies or tunings. All three resonant frequencies
(including the coupling network) are considered arbitrary; in
fact, our primary task is to determine values for them that result
in frequency locking or synchronization. The frequency-domain
equations can be written by inspection as follows:

(1)

and explicitly show how the coupling currentis related to the
oscillator voltages through admittance transfer functions. The
oscillator transfer functions are necessarily nonlinear since a
practical microwave oscillator requires a stable steady-state am-
plitude, and we will assume the nonlinearity is sufficiently weak
so that the outputs are nearly sinusoidal. The most common
model used for such applications is a linear resonant circuit con-
taining a negative resistance or conductance whose magnitude
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saturates with increasing voltage amplitude. Our circuit of Fig. 1
meets these criteria if is a decreasing function of ampli-
tude. This model allows us to separate the nonlinear part of the
admittance transfer function from the linear part

(2)

where are the amplitude and frequency of oscillator I,
etc., and the subscripts “” and “ ” refer to the nonlinear and
linear portions of the circuit. The admittance transfer functions
are essentially filters that act on an “input” voltage and produce
an “output” current. Since the nonlinear conductance is assumed
instantaneous, the output current from this portion of the admit-
tance is a function of the input voltage amplitude. The admit-
tance from the linear portion of the network produces time-de-
layed responses so that differential equations are needed to re-
late input and output. For a linear transfer function with
an input expressed as , the output
can be written [4] as follows:

(3)

For a high-frequency narrow-band input signal, only the first
two terms need to be retained since the derivatives of
diminish quickly with increasing . The result is Kurokawa’s
substitution [5], which is a linear approximation of the transfer
function about a suitable frequency

(4)

Writing the output voltage in phasor notation, we have

(5)

The third term in the series (3) can be used to check the validity
of the "slowly varying" assumption. Returning to (2), we must
approximate the frequency-dependent parts of the admittance
functions with a linear frequency dependence. The oscillator ad-
mittance function for oscillator I is

(6)

where is the tank resonant frequency,
is the nonlinear device conductance at zero voltage, is
the saturation function for the device conductance, and

is the oscillator “bandwidth.” The frequency is an ar-
bitrary expansion frequency and the best choice is the steady-
state frequency of oscillator I. If the frequency of oscillator I re-
mains close to its “free running” or uncoupled value , then
the linear approximation is extremely accurate, as illustrated in
Fig. 2. The admittance function for oscillator II is identical, ex-
cept that replace . Using the first and second
equations of (2) and the results of (5), we can write the dynamic

Fig. 2. Exact and approximate oscillator admittance magnitude and phase.
Agreement is excellent over a broad range of frequencies.

equations for the two oscillators in terms of the coupling cur-
rent. The transfer function and its derivative at frequencyare

and

(7)

and, after inserting these expressions into (5), solving for the
derivatives, and repeating for oscillator II, we find the oscillator
dynamic equations are

(8)

where we have used the instantaneous phase ,
to simplify the notation. Note that we have expressed

the coupling current in terms of its slowly varying amplitude and
phase as . The current expansion
frequency is arbitrary and the equations will take on different
forms depending on the choice of.

Up to this point, the analysis has been essentially the same
as in [3]. We now consider the (possibly) narrow-band coupling
circuit. The admittance function for the coupling network is

(9)
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Fig. 3. Exact and approximate coupling circuit admittance magnitude and
phase using linear approximation for entire transfer function. The phase is
quite close, but the magnitude response is a very poor approximation.

If we were to use the broad-band assumption and expand the
admittance function in a Taylor series about , as in [3], we
would have the following result:

(10)

Fig. 3 shows a plot of the magnitude and phase of the approxi-
mate and exact transfer functions. Although the phase response
is quite close, the magnitude is a poor approximation. We would
expect good agreement only very close to the expansion fre-
quency or if the coupling network is extremely broad band. This
is the “broad-band” approximation used in [3], and it is this ap-
proximation we must improve to extend the analysis to more
narrow-band coupling networks.

The first step is to express the admittance function as a ratio
of polynomial functions and write the
relation between oscillator voltages and coupling currents in (2)
as

(11)

Fig. 4. More accurate approximation of coupling circuit admittance using
separate linear approximations of numerator and denominator.

The transfer functions and operate on the current and
voltage separately and we may apply Kurokawa’s substitution
to each. This has the effect of linearizing the numerator and
denominator of the admittance function separately and leads to
a highly accurate approximation

(12)

The magnitude and phase response of (12) are compared
to the exact response (9) in Fig. 4. Using (11) and applying
Kurokawa’s substitution, we have

(13)
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Fig. 5. N oscillators connected through an arbitrary linear coupling network.

Rearranging terms gives the dynamic equations for the ampli-
tude and phase of the coupling current

(14)

Equations (8) and (14) together represent the dynamic equations
for the amplitudes and phases of the oscillators and the coupling
current. The order of the system matches the order of the exact
system and, due to the high accuracy of the approximations, we
expect the dynamics of the approximate system to give good
agreement with the exact system.

III. COMPLEX SYSTEMS

The procedure outlined in the previous section can be
extended to higher order systems. Foroscillators coupled
through an -port network, as shown in Fig. 5, the fre-
quency-domain equations can be written

(15)
Any coupling admittances with strong frequency dependence
that require the denominator expansion used in the previous sec-
tion should be removed from the sum and handled separately.
For example, suppose that theth and th terms in the sum above
have rapid frequency dependence. The network equations be-
come

(16)

Fig. 6. Fourth-order coupling network. The overall admittance transfer
function can be divided into sums of simpler functions using the partial fraction
expansion technique. This method is essentially one of approximating the poles
and zeros of the coupling network admittance function.

The narrow-band admittances produce additional pairs of dif-
ferential equations for the associated coupling currents, which
produces an approximate system of nearly the same order as the
original (depending on the number of such terms that exist).

One may find that an admittance function cannot be ade-
quately represented by a linear approximation of the numerator
and denominator. For example, if, in our circuit of Fig. 1, the
coupling network was composed of two second-order resonant
networks, as shown in Fig. 6, the coupling admittance transfer
function would be fourth order instead of second, as shown in

(17)

Using a partial fraction expansion expresses the admittance as
the sum of two second-order functions. For this contrived ex-
ample, this step is easy as follows:

(18)

and, as before, we define two coupling currents, one due to each
admittance function. Once again, we are increasing the order of
the system to achieve more accurate results.

IV. TWO VAN DER POL OSCILLATORS COUPLED THROUGH A

RESONANT NETWORK

The above analysis techniques will be applied to the case of
two Van der Pol oscillators coupled through a resonant network,
as shown in Fig. 1. The dynamic equations relating the slowly
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varying quantities are given in (8) and (14) and above, and re-
peated as follows for convenience:

(19)

where the oscillator bandwidths are , the un-
loaded coupling circuit bandwidth is , the os-
cillator uncoupled resonant frequencies, or tunings, are

and , and the coupling constant is
. These five parameters directly affect the ability

of the oscillators to lock and our task is to understand the effects
of each on this ability. The coupling equations are represented
in “rectangular” form rather than “polar” form using the trans-
formation

(20)

because the current amplitude can drop to zero or become nega-
tive. This occurrence does not present formal mathematical dif-
ficulties, but is avoided by using the rectangular form. Note also
that we have chosen the coupling circuit “reference” frequency

equal to the steady-state oscillator frequencyto simplify
the equations. The steady synchronized states are found by set-
ting the derivatives in (19) equal to zero and solving the alge-
braic system for the amplitudes, phase difference ,
and the frequency (note that one of the oscillator phases is ar-
bitrary due to the arbitrary time origin). The two coupling vari-
ables and can be eliminated so that the resulting system
consists of four equations in four unknowns. Once a locked state
is found, stability of the state can be tested by perturbing the
variables of (19) and observing whether the perturbations in-
crease or decrease in time. Perturbing the variables produces
a linear system of differential equations with constant coeffi-
cients, and when the real parts of the eigenvalues of this system
are all negative, the state is stable [6].

V. SYNCHRONIZED STATES

Different characteristics of the system are important in dif-
ferent situations. For example, the variation of the phase dif-
ference is important in the design of beam scanning systems
[7]–[10], and the frequency modulation bandwidth and array
settling time are important in wide-band communication sys-
tems, and these characteristics may be examined using (19).
The focus of this paper, however, is on understanding how the

Fig. 7. Region of frequency locking in the plane of oscillator tunings with
respect to the coupling circuit resonant frequency. The lines of symmetry are
the lines of equal tunings! = ! and equally spaced tunings(1=2) (! +
! ) = ! . The widthW is the total span of�! + �! at half the
maximum value of�! ��! . The small arrow shows the direction of the
perturbation used for the Appendix.

frequency-locking ability of the oscillators depends on the cou-
pling strength, bandwidth, and oscillator tunings for many prac-
tical combinations of each. The oscillator and coupling circuit
tunings that result in frequency locking are expressed graphi-
cally in Fig. 7, where the axes are the oscillator tunings referred
to the unloaded coupling circuit resonant frequency. The region
enclosing the origin is where frequency locking occurs; i.e., if
the oscillator tunings lie within this region, the oscillators will
synchronize.1 Our task is to determine the size and shape of this
region for various values of coupling strength, coupling band-
width, and oscillator bandwidth. In (19), we refer the oscillator
tunings and the frequencyto the coupling circuit resonant fre-
quency using the substitutions

(21)
Setting the derivatives equal to zero gives the algebraic equa-
tions describing the locked states that, after eliminating the cou-
pling variables and , can be written as

(22)

where

1Strictly speaking, this is the region where synchronizationmayoccur, de-
pending on initial conditions. It is the region of existence of stable synchronized
states.



242 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001

and

are, respectively, the coupling strength scale factor and cou-
pling phase that result from frequency-dependent attenuation
and phase delay through the coupling circuit and .
The form of (22) is nearly identical to the form given in [3]
describing frequency-independent coupling networks, except
that here the coupling parameters are frequency dependent.
The left-hand sides of the equations contain terms not present
in the analysis of [3] that account for the loading effects of the
coupling circuit on the oscillators.

The concept of coupling magnitude and phase is useful in
understanding the effect of the coupling network on the ability
of the oscillators to lock and is used extensively in [3]. The
main result is that the tendency to lock increases with increasing
coupling strength and is maximum for zero or 180coupling
phase. In fact, for 90 of coupling phase, the ability to lock is
minimized. For the present case, we can identify a frequency-
dependent coupling magnitude and coupling phase

and can immediately see that these quantities depend
on the location of the steady-state frequencyrelative to the
coupling circuit passband. If the frequencylies at coupling
circuit resonance, i.e., , the coupling
strength and phase are both optimized, and the locking tendency
is strongest. As becomes small, coupling becomes
weak and the coupling phase approaches90 , possibly causing
loss of synchronization. Thus, frequency locking depends criti-
cally on the proximity of the steady-state frequency to the cou-
pling circuit passband. The frequency is a complicated function
of the circuit parameters that we must solve for using (22). In
the following section, we will apply approximate methods to
estimate and use this result to determine how the locking
region depends on the circuit parameters.

Solutions to (22) indicate the existence of frequency-locked
states, but we will briefly pause to consider these steady states
from the viewpoint of linear circuit theory. As described above,
the amplitudes and phases must satisfy the frequency-domain
equations with Kurokawa’s substitution, which essentially re-
places the steady-state frequencywith the dynamic quantity

for each transfer function (see [11]). In the
steady state, the amplitudes and phases of the oscillators
are constant, thus, the time derivatives in Kurokawa’s substitu-
tion vanish and, therefore, the steady-state system satisfies the
frequency-domain transfer functions. Since the amplitudes are
constant, we can replace the amplitude-dependent conductances

with constant ones with the same values without perturbing the
steady-state solution. Recalling that the locked state contains
only one frequency component, we can identify the state as a
mode (i.e., an eigenstate) of the linear system. This modal view-
point can be helpful in systems with very small nonlinear con-
ductances that can, to the first approximation, be ignored. This
leads to orthonormal modes and such systems are elegantly an-
alyzed using the average potential theory [12].

VI. STABILITY OF SYNCHRONIZED STATES

A solution to (22) indicates a state exists, but the stability of
the state must be ascertained by perturbing the system and ob-
serving whether the perturbations increase or decrease in time.
We will perturb the steady-state values by substituting the fol-
lowing into (19)

(23)

and retaining only first-order terms, where , etc. are the
steady-state values for the mode-locked state in question and

, etc. are the infinitesimal perturbations. The resulting
dynamic system for the perturbations, called the variational
system, is shown in (24) at the bottom of this page. All ex-
pressions appearing within the matrix are the time-independent
values of the frequency-locked state. As mentioned before, one
steady-state oscillator phase is arbitrary, thus, we set
and . This implies that the above system has only five
degrees of freedom and, therefore, one of the eigenvalues is
zero. It is possible to reduce the set of equations since they are
linearly dependent, but the coefficients of the remaining system
are considerably more complicated and the simple coupling
structure is obscured. Since the above matrix has constant
coefficients, the system is stable when the real parts of all of
the nonzero eigenvalues are negative.

We are now prepared to determine the region in the tuning
plane within which stable frequency locking occurs. Equation
(22), which determines the existence, and (24), which deter-
mine stability of locked states, are sufficiently complicated to
require computer evaluation of exact solutions. However, for
many cases, approximations can be made to reduce the com-
plexity. In the following section, we will derive simple expres-
sions for the values of oscillator tunings that result in stable fre-

d

dt

�

�

�

�

�

�

=

! (1� 3A ) �A (�! ��! )

�! ��!

A
! (1�A )

0 0

0 0

! 0

0
!

A

0 0

0 0

! (1� 3A ) �A (�! ��! )

�! ��!

A
! (1�A )

�! cos(��) �! sin(��)

!
sin(��)

A
�!

cos(��)

A

�� ! 0

0 �� ! A

� ! cos(��) �� ! A sin(��)

� ! sin(��) � ! A cos(��)

�! �!

��! �!

�

�

�

�

�

�

(24)



LYNCH AND YORK: SYNCHRONIZATION OF OSCILLATORS COUPLED THROUGH NARROW-BAND NETWORKS 243

quency locking for various values of coupling strength and cou-
pling bandwidth.

VII. CASES OFPRACTICAL INTEREST

In order to simplify the analysis, we will consider cases of
weak, strong, wide-band, and narrow-band coupling separately
and make the appropriate approximations for each case. Taking
all of these results together gives us a broad understanding of
the system for a wide range of parameters. In the end, we will
compare our approximate expressions for the locking region di-
mensions to solutions obtained by computer simulation and will
find good agreement in all cases.

The first difficulty we encounter is that there may be more
than one solution to (22), each solution corresponding to a dif-
ferent mode of oscillation. In general, there will be three stable
modes for the circuit considered here, one whose frequency is
located near the resonance of the coupling network and the other
two whose frequencies are located near each oscillator tuning.
The former is the mode of practical interest and only this mode
will be studied in this paper. It has the largest locking region
since its frequency is closest to the coupling circuit passband,
and very often it is the only mode excited. The other two modes
are possible only when the oscillators are tuned well within each
other’s and the coupling circuit’s passbands.

There are two types of tunings for which the mode of interest
is relatively easy to analyze. For equal tunings, ,
which corresponds to the diagonal line through the first and third
quadrants in Fig. 7, one can show using (22) that the phase dif-
ference equals zero and the oscillators will always lock no
matter how far away from the origin we tune. This occurs be-
cause in-phase oscillation eliminates current flow through the
coupling network and since the oscillators are identically tuned
they will remain in phase in the absence of coupling. How-
ever, one can see in the figure that the locking region becomes
very small as we tune far away from the origin so that, prac-
tically speaking, synchronization will be lost. When the cou-
pling circuit resonance is located exactly between the oscillator
tunings, , which corresponds to the diagonal
line through the second and fourth quadrants, one can show that

, which implies maximum coupling strength, optimum
coupling phase, and equal amplitudes. We will refer to this type
of tuning as “equally spaced” since all three frequencies are
equally spaced. The locking region is symmetric about the di-
agonal lines of equal and equally spaced tunings. Once we de-
termine the locking region boundary in one quadrant, the entire
region is determined. In the analysis that follows, we will con-
sider quantities above the line of equal tunings since the phase
difference is always positive in this region and this simplifies
the mathematics.

Moving along the line of equally spaced tunings, the quan-
tity increases and the total change in

as we traverse the entire locking region we will call the
“height” and denote it (the factor of in Fig. 7 is required
since the measure indicated is the diagonal length). As we move
away from this line perpendicularly within the locking region,
we move in the direction of even tuning and vary the quantity

, which is the “average” oscillator

tunings away from the coupling circuit resonance, and eventu-
ally meet the locking region edge. Twice the total change in
at half the maximum value of we will refer to as the width

, indicated in Fig. 7. Since along the line of equally
spaced tunings, the value of is relatively easy to determine.
However, determining requires knowledge of the vari-
ation as we move away from this line since the ratio
has direct bearing on .

The functional form of the phase difference for equally
spaced tunings is derived from (22) by subtracting the second
and fourth equations and setting . The result is

(25)

and we can immediately see that solutions cannot exist for
. Although we cannot easily prove it for the

general case, computer simulations suggest that a necessary
condition for stability is that the phase difference lie between

90 and 90 for any value of coupling strength or bandwidth,
and we will assume that this is true. Thus, as the oscillator
tunings are moved apart, but the coupling circuit resonance
is maintained exactly halfway between, the phase difference
increases until the locking-region boundary is encountered.

Along the line of equally spaced tunings, the amplitudes,
which are equal in this case, are found from (22) as follows:

(26)

The amplitude variation across the locking region increases with
increasing coupling strength , but remains close to unity for
weak coupling.

The functional dependence of can also be found by
adding the second and fourth equations of (22) as follows:

(27)

The amplitudes and the phase difference depend on the oscil-
lator tunings through (22), and also appears implicitly in
. This complexity forces us to approximate for specific

cases. Since the width of the locking region depends on how
fast changes as we move away from the line of equally
spaced tunings, we will derive the change in for a small
change in for a fixed value of . Referring to Fig. 7,
we will move perpendicularly away from the diagonal as indi-
cated. After considerable algebra (see Appendix), the approxi-
mate value for valid near the line of equally spaced tunings
is

(28)

where the amplitude is given by (26). This relation is simple
enough to allow us to determine the approximate locking region
width for cases of practical interest, but the approximations turn
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out to be surprisingly accurate, as we will show by comparing
them to computer simulations.

Whether we classify a coupling network as “narrow-band” or
“broad-band” depends on the behavior of as the coupling
circuit is tuned relative to the oscillators. This type of tuning
is equivalent, in our analysis, to tuning in the direction perpen-
dicular to the line of equally spaced tunings, where the spacing
between the oscillators is maintained, but both are tuned rela-
tive to the coupling circuit resonance. For broad-band coupling,
we would expect the steady-state frequency to be determined
by the oscillator tunings and not by the coupling circuit, which
implies . Whereas
for narrow-band coupling, we would expect the frequency to
follow the coupling circuit resonance or .
These two conditions give us criteria to identify the coupling
type as broad or narrow. Equation (28) tells us that for suffi-
ciently small , i.e., as is tuned sufficiently close to

, that the broad-band condition is satisfied even for small
, which seems to contradict our usual notion of narrow-band

coupling. If the oscillators are both tuned within the unloaded
coupling circuit passband, however, the steady-state frequency
will always remain within this band, thus, this is essentially
a “broad-band” condition. Furthermore, the effective coupling
depends not on the unloaded coupling bandwidth, but on the
loaded bandwidth, which involves the coupling strength and os-
cillator bandwidths. When the oscillator bandwidths overlap the
coupling circuit bandwidth, the coupling circuit is more heavily
loaded by the oscillators and, hence, the loadedis reduced.
We must keep in mind that the definitions of broad-band and
narrow-band in the following sections are somewhat arbitrary
since the steady-state frequency changes in different parts of the
locking region.

The division of the coupling strength and bandwidth into re-
gions of weak/strong and narrow/broad coupling are expressed
in graphical form in Fig. 8. The boundaries separating the var-
ious regions will come directly out of the analysis that follows.

A. Weak Coupling—

If the resistance in the coupling network of Fig. 1 becomes
large, then and the oscillator amplitudes
remain close to unity. The question immediately arises as to
which terms, if any, in (28) we can neglect and under what con-
ditions. Using the maximum value of from (25) we have,
using (26), the following:

(29)

and since is small, the third term in the denominator is always
much less than the second and, therefore, can be neglected. At
the edge of the locking region, when the second term is much
less than unity, the coupling circuit is broad-band, and as unity is
approached, blows up. This behavior is not what we would
expect for narrow-band coupling circuits, as discussed in the
previous section, and causes loss of lock fairly close to the line
of equally spaced tunings. The boundary for narrow-band versus
broad-band coupling can be taken as .

Fig. 8. Parameter diagram showing four regions of interest. Coupling strength
depends only on� , whereas coupling bandwidth depends on! and� .

1) Broad-Band Case— : Along the line of
equally spaced tunings, one can show that stable solutions exist
for all , although proof of this will be omitted here.
The height , found from (25) and shown in Fig. 9(a), is

(30)

Thus, the height of the region is proportional to the coupling
strength and oscillator bandwidth. This is a well-known result
that has been derived in previous papers [1].

From (28), broad-band coupling implies , which
means that the steady-state frequency is exactly between the os-
cillator tunings and is independent of the coupling circuit reso-
nant frequency. This can be taken as the defining characteristic
of broad-band coupling. Since the amplitudes are nearly equal to
unity throughout the region, the relation between the phase dif-
ference and oscillator tunings can be approximated from (22) as

(31)

Thus, the locking region boundary consists of the values of
where and is plotted in Fig. 9(a). The width of the
region when is half of its maximum value occurs when

, as seen from (31). Including the second
term in the denominator of (28) for gives a more accurate
result for the width

(32)

The case of a resistive coupling circuit can be found by let-
ting the coupling circuit bandwidth approach infinity in (30) and
(32). The result is an infinite locking region that follows the line
of equal oscillator tunings, as we expect from physical consid-
erations.

2) Narrow-Band Case— : We now consider
small coupling circuit bandwidths. The quantity near the
line of equally spaced tunings is found from (28) to be

(33)
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(a)

(b)

Fig. 9. Dimensions of the locking region for weakly coupled oscillators. (a)
Case of broad-band coupling has a fairly wide locking region that is bounded by
the phase requirementj��j < �=2. (b) Narrow-band case is quite thin and is
bounded by loss of stability due to high sensitivity of the steady-state frequency
with respect to tuning variations. The additional locking regions appear for
values of� near, but below, unity.

Near the center of the locking region, which is for small ,
, and we see the same behavior as in the previous

case. However, as increases, the denominator in (33) de-
creases, and becomes much more sensitive to tuning varia-
tions. Computer simulations show that the value of which
causes the denominator to vanish is (approximately) a stability
boundary, and for values of , for which is negative, the
system is not stable. The stability boundary and, therefore, the
height of the locking region, is found by setting the denominator
of (33) equal to zero

(34)

For coupling bandwidths above this stability boundary
does not exist. Below this threshold, we must also meet the gen-

eral existence criterion that . Using these two
criteria together, we find that this new stability boundary ex-
ists only for and above this value of coupling
bandwidth the general existence criterion applies. Assuming the
former condition applies, the stability region is found, at least
approximately, using

(35)

with given in (33). To find the width, we find
which, as for the previous case, occurs

at . Solving for the width gives

(36)

Fig. 9(b) shows the approximate shape of the locking re-
gion for weak- and narrow-coupling bandwidth. The region is
much thinner near the edge of the odd tuning boundary due to
the increased sensitivity of to changes in near this
boundary.

If we include the third term in the denominator of (28) we
find that, for values of close to, but less than unity, the de-
nominator becomes zero a second time, and for values of
greater than this critical value, the locked states are stable once
again. Thus, two new locking regions appear and are discon-
nected from the main region [they are shown as dotted regions
in Fig. 9(b)]. In this analysis, however, we will limit ourselves to
small coupling parameters for which case these additional sta-
bility regions do not exist.

B. Strong Coupling—

As the coupling strength is increased, the amplitudes de-
crease considerably as we traverse the locking region in the di-
rection of equally spaced tunings. The physical reason for this
is that, as the coupling resistor is reduced, the power dissi-
pated in it increases. The oscillator conductances must make up
this power loss by becoming more negative, which is achieved
by amplitude reduction. However, power dissipation in the cou-
pling network requires a phase difference to exist between the
oscillators, and this phase difference increases as we traverse the
locking region. If either of the amplitudes drops too far below
unity, the system becomes unstable and locking is lost. It is dif-
ficult to determine exactly when this occurs, but we can find the
approximate amplitude boundary from the variational system
(24).

The variational system consists of three second-order sub-
systems, the three diagonal blocks, and are coupled through
the off diagonal blocks. If no coupling existed, then stability
of the system would be insured if each of the three subsystems
were stable. The coupling circuit is always stable since it con-
tains some nonzero positive resistance, but the subcircuits repre-
senting the oscillators will become unstable if either amplitude
drops excessively since low amplitudes imply net negative re-
sistance. One can show that the matrix of coefficients of each
oscillator subcircuit has a positive determinant along the line of
equal tunings when the coupling coefficient is greater than
unity. This implies that stability is determined by the trace of
the matrix. Applying this criterion to each diagonal submatrix
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in the variational system gives conditions for stability in the un-
coupled case, but which we assume hold approximately in the
general case

and (37)

This means that if either amplitude drops below , the
system will become unstable. This approximate stability
condition is surprisingly accurate for most values of coupling
strength and bandwidth, and becomes inaccurate only when
these parameters both become quite large. Even in this case,
however, the dimensions of the locking region given below are
fairly accurate.

For strongly coupled oscillators, the boundaries of the locking
region can be approximated as the locus of points where either
oscillator amplitude is . Along the line of equally spaced
tunings, the value of that causes the amplitudes to assume
this value can be found from (26) and is

for

(38)

One important consequence is that, for a coupling strength
, the locking-region height is maximized while still allowing

the phase difference to vary 180 over the locking region.
This is important for beam-scanning systems where the designer
wishes to maximize the total phase variation and the locking
range simultaneously.

If the coupling strength is sufficiently strong, the width of
the region will also be determined by the amplitude criterion of
(37). To estimate the rate of decrease of the amplitude away from
the line of equally spaced tunings, we resort to a perturbation
analysis, not derived here for the sake of brevity. The results
show that if we move from this line in the direction of increasing

, that the amplitude of oscillator I will diminish according
to

(39)

where is given by (26). We will assume strong coupling, i.e.,
, and simplify the denominator. To find the width

of the locking region, we will evaluate the amplitude at
and find the value of that gives .

First, however, we must determine .
Using (26) for the amplitude for odd tunings and noting that

for large coupling strengths we can expand the square root,
from (28) is approximately

(40)

This shows that for , the steady-state
frequency remains halfway between the two oscillators,
as in the case of weak broad-band coupling, but for

, the steady-state frequency follows

(a)

(b)

Fig. 10. Dimensions of the locking region for strongly coupled oscillators.
(a) For broad-band coupling, the region is large, but increases as

p
� . (b)

Narrow-band case shows large region width as oscillator tunings are moved
apart, but remains narrow when oscillators are tuned within the coupling circuit
passband.

the resonant frequency of the coupling network. Using the
above result at the maximum value of given by (38), and
assuming , we can say that the boundary for weak
versus narrow-band coupling is at .

1) Broad-Band Case— : In this section, we
will assume that so that . Using
this result in (39) for the amplitude of oscillator I and setting the
amplitude to , we find that the width of the locking region
is

(41)

The locking region for this case, shown in Fig. 10(a), looks sim-
ilar to the case of weak and broad-band coupling, but the height
grows more slowly with increasing coupling strengthand the
width is no longer constant with .
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Fig. 11. Comparison of approximate formulas to computer simulations for
“high”-Q coupling circuit.

2) Narrow-Band Case— : We now have
and using this result in (39)

and setting the amplitude to , the width of the locking
region is

(42)

The locking region for this case is shown in Fig. 10(b), where
we can see that the region gets slightly wider as we move along
the line of equally spaced tunings. The reason for this behavior
is that as the oscillators are tuned far apart, they influence the
steady-state frequency less. Thus, the frequency can follow the
coupling circuit bandwidth and strong coupling is maintained
over a wide range.

VIII. C OMPUTERSIMULATIONS

To verify the accuracy of the above expressions for the height
and width of the locking region, MathCAD was used to obtain
solutions to (22) and to compute the eigenvalues of the varia-
tional system (24) for various circuit parameters. In addition,
the nonlinear differential equations (19) were also numerically
integrated to verify that the steady states and eigenvalues for a
particular set of parameters were correct. The coupling-circuit
resonant frequency and oscillator bandwidths were kept con-
stant at and . The height and width

Fig. 12. Comparison of approximate formulas to computer simulations for
“moderate”-Q coupling circuit.

were computed for three different values of coupling bandwidth,
as functions of the coupling strength,

and the simulation results and the results calculated from the ap-
proximate expressions are shown in Figs. 11–13.

IX. CONCLUSION

The theory developed in this paper allows one to derive a
nonlinear system of differential equations for oscillators cou-
pled through frequency-dependent networks, and shows explic-
itly the approximations involved in applying Kurokawa’s sub-
stitution. The theory shows the limitations of a previous analysis
by the authors for broad-band coupling networks and then ap-
plies the theory to the case of two oscillators coupled through
a frequency-dependent network. Simple approximate formulas
for the dimensions of the locking region are derived and plotted
against values determined by computer simulation. The analysis
suggests specific boundaries that separate the strong/weak and
narrow-band/broad-band coupling regions. An important case
of practical interest is when two oscillators are coupled through
a high- cavity. For weak coupling, the analysis shows that the
locking region is quite small; the region width is on the order
of the unloaded bandwidth of the coupling circuit. For strong
coupling, oscillation near the resonant frequency of the cavity
occurs primarily when the cavity resonance is located between
the two oscillator tunings and increases as the oscillators are
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Fig. 13. Comparison of approximate formulas to computer simulations for
“low”-Q coupling circuit.

tuned apart from one another. For this case, the phase difference
between the oscillators remains near 0and loss of synchroniza-
tion is due to large amplitude variations.

APPENDIX

DERIVATION OF AMPLITUDES AND NEAR LINE OF

EQUALLY SPACED FREQUENCIES

In this section, we derive approximate expressions for
and the amplitudes and that are valid near the line of
equally spaced tunings as we tune perpendicularly away from
that line, as indicated by the small arrow in Fig. 7. The first and
third equations of (22) relate the oscillator amplitudes to various
quantities and are repeated as follows with the coupling phase
expanded:

(43)

Subtracting the second fourth equations of (22), we arrive at an
expression for the difference between oscillator tunings

(44)

and adding them gives an expression for

(45)

As we vary an infinitesimal amount away from zero,
many of the quantities in the above equations will change. For
example, is nominally zero (this can be taken as the defi-
nition of the mode of interest), but after this perturbation, it will
have a nonzero value. The quantity, however, depends on the
square of [see (22)] thus, to the first order,will remain
unity.

The equations are perturbed by implicit differentiation and
any unperturbed terms will be evaluated on the line
and, as a result, some may vanish. Along this line, (43)–(45)
take on particularly simple forms, and result in the amplitude
expression of (26) and the following relations for the phase dif-
ference:

(46)

These relations help simplify the form of the mathematics that
follows.

Implicitly differentiating the amplitude, (43) gives

(47)

where the unperturbed quantities have been evaluated along
. Adding and subtracting these equations and using

the relations (46) gives

(48)
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Applying the same analysis technique to (44), which we main-
tain at zero, gives

(49)

Using the first of (48), the above expression becomes

(50)

The first parenthetic quantity is not generally zero, thus, we must
have and, from (48), it follows that .
Using these results with the second equation of (48), we can
find the approximate expression for the amplitude of oscillator
II (which is the lesser), valid for small , stated in (39) as
follows:

(51)

The remaining task is to find an approximate expression for
. Implicitly differentiating (45) and using the relations (46)

and those resulting from (50), we find

(52)

which, after rearrangement, gives (28) valid for small and
as follows:

(53)
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