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Synchronization of Oscillators Coupled Through
Narrow-Band Networks

Jonathan J. Lynch and Robert A. Yo&enior Member, IEEE

Abstract—The ability of two coupled oscillators to synchronize C. L R
depends critically on the coupling network. Previous analyses have + —| HQMW— +
accurately predicted the performance of quasi-optical microwave -—
oscillator arrays for both weak and strong coupling, but have V() — 1 - V,(0)

larger than the locking bandwidths of the oscillators. In this paper, GOAT L L -G(A
the authors develop a method for deriving a suitable system of Gla) Lo C | l ¢ L -G(A)
nonlinear differential equations describing the oscillator ampli- Oscillator 1 YT (v=0) Y Oscillator IT
tude and phase dynamics using a generalization of Kurokawa’'s

method. The method is applied to the case of two Van der Pol _ . .
oscillators coupled through a resonant network for a wide range of Fig. 1. Two self-sustained oscillators coupled through a resonant network.
coupling strengths and bandwidths. Simple approximate formulas

been limited to coupling networks with bandwidths considerably <—‘ |—> |—>

are developed for the size of the frequency locking region as Il. DYNAMICS OF TWO OSCILLATORS COUPLED THROUGH A
functions of the basic circuit parameters. RESONANT CIRCUIT
Index Terms—njection locking, oscillators. For oscillators coupled through a broad-band linear network,
the dynamic equations for the amplitudes and phases of each
|. INTRODUCTION oscillator can be represented in a highly compact form for any

, ) ] ~number of oscillators and complexity of the network, as shown
I N THE authors’ previous work, coupled microwave oscily, 3] | the frequency variations of the coupling netwdrkpa-
lators have been modeled as simple Van der Pol oscillatoLgneters are significant compared to the bandwidth of the os-
coupled through either a resistive net\_/vork or a broad-band n@"ﬁTators, the “broad-band” assumption breaks down and the re-
work that produces a constant magnitude and phase delay §g¢ing dynamic equations can be highly inaccurate. This makes
tween the oscillators [1]. This treatment provided a satisfactoty h«e when one considers that narrow-band coupling networks

model for many applications, and the simplicity of the equatio%e composed of inductors and capacitors (or at least can be

allowed one of the authors to conceive and design an electrflsyeled as such) that raise the order of the overall system. One

cally steerable transmitting array requiring no electronic phagg, |4 expect that correct modeling of such systems requires ad-
shifters and only two adjustment ports [2]. In another paper, thigiona) sets of differential equations to accurately describe the
simple theory was extendgd to include the effects ofan arb'tr&Wnamics of the amplitudes and phases of the coupling param-
N-port broad-band coupling network described by a s&t of gtarg This is, in fact, the case, and we will show how to derive

or Z-parameters [3]. This analysis is useful in showing the efsese gifferential equations directly from the netwistparam-
fects of the coupling network parameters, but is limited to casgg, g

where the coupling network bandwidth is much greater than therye theory is exemplified using a circuit composed of two
oscillator bandwidths. The primary reason for this limitation i§arajle| resonant circuits containing nonlinear negative resis-

that the analysis relies on an approximation of the frequency dgpce devices and coupled through a series resonant circuit, as
pendence of the coupling networkparameters that is accurates o in Fig. 1. The oscillators are identical, except for their

only in the immediate vicinity of the frequency about which thgagonant frequencies or tunings. All three resonant frequencies
approximation is made. The following analysis utilizes more agi 1y ding the coupling network) are considered arbitrary; in
curate approximations and extends its applicability to the caggt our primary task is to determine values for them that result

of extremely narrow-band coupling. Using this theory, we aig trequency locking or synchronization. The frequency-domain
able to model the dynamics of oscillators coupled through MaBYuations can be written by inspection as follows:

types of circuits, in particular, higli-cavities. In this paper, we
will first develop the theory and then apply it to the simple case L="Vi L=-YV; L=-Y.(Vi-V2) (1
of two Van der Pol oscillators coupled through a resonant nétad explicitly show how the coupling currehtis related to the
work. oscillator voltages through admittance transfer functions. The
oscillator transfer functions are necessarily nonlinear since a
practical microwave oscillator requires a stable steady-state am-
Manuscript received September 29, 1994. plitude, and we will assume the nonlinearity is sufficiently weak
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saturates with increasing voltage amplitude. Our circuit of Fig. 1 o0,=1,0,=10
meets these criteria (#(A) is a decreasing function of ampli-

tude. This model allows us to separate the nonlinear part of the
admittance transfer function from the linear part 41

I. = [Gni(AL) + Yo (w)| V2

I. = — [Grn2(A2) + Yio(w2)] V2

Ic = - Y;:(wc)(vl - VQ) (2)
where Ay, w; are the amplitude and frequency of oscillator I, Lt
etc., and the subscriptsV” and “L” refer to the nonlinear and

linear portions of the circuit. The admittance transfer functions é ;g 1'0 1'2 f4 1'6 -
are essentially filters that act on an “input” voltage and produce

Exact Approx:'.

Magnitude

an “output” current. Since the nonlinear conductance is assumed zzzg:;tcyy
instantaneous, the output current from this portion of the admit- 22

tance is a function of the input voltage amplitude. The admit- « Eract
tance from the linear portion of the network produces time-de- 0

layed responses so that differential equations are needed to re- Approx
late input and output. For a linear transfer functiéfigw) with
an input expressed asg,(t) = A(¢) cos(w,t+ ¢(t)), the output
can be written [4] as follows:

i 1 d"H(w,) d"(Ac’?)
ol d(jw) dtr
For a high-frequency narrow-band input signal, only the first

two terms need to be retained since the derivative&6f) _ , _ _

diminish icklv with increasinen. The result is Kurokawa’s Fig. 2. Exact and approximate oscillator admittance magnitude and phase.
'mm!s .QUI y o ° 9. ) ; Agreement is excellent over a broad range of frequencies.

substitution [5], which is a linear approximation of the transfer

function about a suitable frequency

Phase

t) =R — VY
Vout (1) e 6 8 10 12 14 16

& wot] . @) 2

Frequency

equations for the two oscillators in terms of the coupling cur-

Vout (t) rent. The transfer function and its derivative at frequancgare
dH(w,) { ;. A H(wottd) % - < ,wol—w1>
~ _ A wo ) w1) =—Go | f(A)+j ——
Re <H<wo>+ e <¢ JA>>AC (1) (43) 4341
and
) dYi(w) G, -
Writing the output voltage in phasor notation, we have doi J Wa (")

T de derivatives, and repeating for oscillator II, we find the oscillator

The third in th o (3 b d heck th I_ddynamic equations are
t t t t t t .
e third term in the series (3) can be used to check the validity Ay = f(AD) AL + wal, cos(Bs — 6,)

of the "slowly varying" assumption. Returning to (2), we must
approximate the frequency-dependent parts of the admittance b o —w 1 sin(61 — 6,)
functions with a linear frequency dependence. The oscillator ad- L=l Ay Lo

i f ion f ill li .
mittance function for oscillator | is Ay = waf(As)Ag — wal. cos(Bs — 0.)

C
Y1 =—G, f(A1) + — (w2 —w})
Jwi

. H ) A . and, after inserting these expressions into (5), solving for the
AoutGﬁ%M — <H(wo) + d (wo) <¢_JZ>> A6J¢. (5)

. 1,
B2 =we2 — Wq — sin(fs — 6,.) (8)
Ay

=G, () +5 22 © |

Wa where we have used the instantaneous pidse= w;t+¢;(t),
wherew,; = 1/4/L;C is the tank resonant frequena§, ¢=1,2, cto simplify the notation. Note that we have expressed
is the nonlinear device conductance at zero voltaet) is the coupling currentin terms of its slowly varying amplitude and
the saturation function for the device conductance, and= phase as.(t) = I.(t) cos(w.t + ¢.(t)). The current expansion
G, /C is the oscillator “bandwidth.” The frequenay is an ar- frequencyw, is arbitrary and the equations will take on different
bitrary expansion frequency and the best choice is the steatrms depending on the choice ©f.
state frequency of oscillator I. If the frequency of oscillator | re- Up to this point, the analysis has been essentially the same
mains close to its “free running” or uncoupled valug , then asin [3]. We now consider the (possibly) narrow-band coupling
the linear approximation is extremely accurate, as illustratedgifcuit. The admittance function for the coupling network is
Fig. 2. The admittance function for oscillator Il is identical, ex- 1 1

cept thatw,o, wy replacew,;, w;. Using the first and second Yolw) = R. wl =Wt ©

, oc
equations of (2) and the results of (5), we can write the dynamic =3 200w
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Fio. 3. Exact and approximate coupling circuit admittance maanitude aFigP' 4. More accurate approximation of coupling circuit admittance using
9. o E : pproximate pling . 9 g Sparate linear approximations of numerator and denominator.
phase using linear approximation for entire transfer function. The phase’l

quite close, but the magnitude response is a very poor approximation.
The transfer functiond,. and N, operate on the current and

If we were to use the broad-band assumption and expand #@age separately and we may apply Kurokawa’s substitution

admittance functiol,. in a Taylor series about,, as in [3], we to each. This has the effect of linearizing the numerator and
would have the following result: denominator of the admittance function separately and leads to

a highly accurate approximation

2,2

L We Wy twg, _ 1 1

1 1 J Wae 2w2 (w=we) Yo(w)=— 5 5
Yo(w) 2 — — < . R, Wi — WS W — we
c wo, — w7 w2 —w?\? 1= +J
1=j5— <1 ioe ) 2WeWac Wac
crrac Welac 1 1
(20) e —— (12)
C 1 _ j
wac

Fig. 3 shows a plot of the magnitude and phase of the approxi-

mate and exact transfer functions. Although the phase responséhe magnitude and phase response of (12) are compared
is quite close, the magnitude is a poor approximation. We wouldl the exact response (9) in Fig. 4. Using (11) and applying
expect good agreement only very close to the expansion fkirokawa’s substitution, we have

quency or if the coupling network is extremely broad band. This

is the “broad-band” approximation used in [3], and it is this ap- dD.(w.) <¢ jc)

proximation we must improve to extend the analysis to more Deo(we)loe?® + de -J A
narrow-band coupling networks. @ ¢
The first step is to express the admittance function as a ratio  — 1 (Agc?® — A7)
of polynomial functionst,.(w) = N.(w)/D.(w) and write the R,
relation between oscillator voltages and coupling currents in (2) | Wee—we .1 L £ 0.
as —|l=g—+J P —J I.e
wac wac IC
1 6o o
Dc(w)Ic(w) = Nc(w) (Vg(w) _ Vg(w)) (11) = F (AQGJ — Aed ) . (13)

C
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Fig. 6. Fourth-order coupling network. The overall admittance transfer
function can be divided into sums of simpler functions using the partial fraction

expansion technique. This method is essentially one of approximating the poles

and zeros of the coupling network admittance function.
Fig. 5. N oscillators connected through an arbitrary linear coupling network.

The narrow-band admittances produce additional pairs of dif-
Rearranging terms gives the dynamic equations for the amplirential equations for the associated coupling currents, which
tude and phase of the coupling current produces an approximate system of nearly the same order as the
original (depending on the number of such terms that exist).
One may find that an admittance function cannot be ade-
guately represented by a linear approximation of the numerator
Wac and denominator. For example, if, in our circuit of Fig. 1, the
i (VQ sin(f; — 6.) — (Vi sin(6; — 9c))>. coupling network was composed of two second-order resonant
ene (14) networks, as shown in Fig. 6, the coupling admittance transfer
function would be fourth order instead of second, as shown in

I = —waed, + ¢ - (V2 cos(f — 6.) — (Vi cos(fy — 96)))

éc =Woe +

Equations (8) and (14) together represent the dynamic equation
for the amplitudes and phases of the oscillators and the coupli w)

current. The order of the system matches the order of the exact Wae1 FWoco w2
system and, due to the high accuracy of the approximations, we 1—j 2
expect the dynamics of the approximate system to give good 2WWac
agreement with the exact system. =
RC wgcl +w3c2 2
1— (wgcl_w) (WECQ—CU) _J2 # v
lll. COMPLEX SYSTEMS (2wwyc)? 20Wac
The procedure outlined in the previous section can be B (i7)
extended to higher order systems. FBéroscillators coupled
through an~N-port network, as shown in Fig. 5, the fre-
guency-domain equations can be written Using a partial fraction expansion expresses the admittance as
the sum of two second-order functions. For this contrived ex-
N ample, this step is easy as follows:
L =YV, Li=> Yo"V, n=12..,N.
p=1
(15) 1 1 1
Any coupling admittances with strong frequency dependence Y, =— 5 5 + 5 5
that require the denominator expansion used in the previous sec- Re 1ol 7¥ g Yo W
tion should be removed from the sum and handled separately. 2WWac 2WWac
For example, suppose that thie andjth terms in the sum above =Y +Ye (18)
have rapid frequency dependence. The network equations be-
come and, as before, we define two coupling currents, one due to each
admittance function. Once again, we are increasing the order of
I, =YV, the system to achieve more accurate results.
N
I, = Z er;upvp + Loi + L IV. Two VAN DER PoL OSCILLATORS COUPLED THROUGH A
p=1, RESONANT NETWORK
PFi

coup coup The above analysis techniques will be applied to the case of
Dy i =N, Vi two Van der Pol oscillators coupled through a resonant network,
DL, = NSV (16) as shown in Fig. 1. The dynamic equations relating the slowly
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varying quantities are given in (8) and (14) and above, and re- LE
peated as follows for convenience:

Ine al

A =wa(1 = A2 A; + W, [Ace cs(61) + Acy sin(ey)] e
b1 =1 —w — wa Ai [Aca sin(gr) — Ay cos(n)]
Ay =wo(1— A2 Ay — wo[Ace co8(¢2) + Acy sin(e)]
Po =wo2 —w +w, 5 [Ace sin(ga) — Acy cos(¢2)]
Ave = ~wacAve + (@ = Woe)Aey |

+ WacAo [ Az cos(¢ha) — A cos(¢1)]
Acy = _(w - woc)Acx - wacAcy
+ WacAo[Az sin(¢p2) — Aj sin(¢q)] (29)

” ITBFRENCY FCEIIE

:I.'!.'II'II

Fig. 7. Region of frequency locking in the plane of oscillator tunings with
respect to the coupling circuit resonant frequency. The lines of symmetry are

. . the lines of equal tunings,: = w,2 and equally spaced tunings/2) (w.1 +
where the oscillator bandwidths afe, = GO/C’ the un- Wo2) = wec. The widthW is the total span ofAw,; + Aw,. at half the

loaded coupling circuit bandwidth &v,. = R./L., the os- maximum value 0f\w,; — Aw,;. The small arrow shows the direction of the
cillator uncoupled resonant frequencies, or tuningsugge=  Perturbation used for the Appendix.

1/v/LiC andw,2 = 1/4/L>C, and the coupling constant is ) - )

Ao = 1/G,R,. These five parameters directly affect the abilitfréquency-locking ability of the oscillators depends on the cou-
of the oscillators to lock and our task is to understand the effe@énd strength, bandwidth, and oscillator tunings for many prac-
of each on this ability. The coupling equations are representézfl combinations of each. The oscillator and coupling circuit
in “rectangular” form rather than “polar” form using the transtunings that result in frequency locking are expressed graphi-

formation cally in Fig. 7, where the axes are the oscillator tunings referred
to the unloaded coupling circuit resonant frequency. The region
Aew =1ccos(f.:) = L. cos(wt + ¢pc) enclosing the origin is where frequency locking occurs; i.e., if
Aey =I.5in(8,) = L sin(wt + ¢.) (20) the oscillator tunings lie within this region, the oscillators will

. synchronize. Our task is to determine the size and shape of this
because the current amplitude can drop to zero or become n&ggion for various values of coupling strength, coupling band-
tive. This occurrence does not present formal mathematical difidth, and oscillator bandwidth. In (19), we refer the oscillator

ﬁCUItieS, but is avoided by Using the rectangular form. Note al%gnings and the frequencyto the Coup”ng circuit resonant fre-
that we have chosen the coupling circuit “reference’.’ frequen@ly,ency using the substitutions

w. equal to the steady-state oscillator frequeacto simplify

the equations. The steady synchronized states are found by s@o1 = Wo1 — Woe  AWoz = Wo2 — Woe  AWe = W — Woe-

ting the derivatives in (19) equal to zero and solving the alge- o _ (2_1)
braic system for the amplitudes, phase differenge= ¢,—¢;, Setting the derivatives equal to zero gives the algebraic equa-
and the frequency (note that one of the oscillator phases is a,tiqns despribing the locked states that., after eliminating the cou-
bitrary due to the arbitrary time origin). The two coupling variPling variablesA., andA.,, can be written as

abIes_Acx andA,, can'be eI.|m|nated so that the resulting system (1= A2 — AD)A, = — M\yeAs cos(Adp — D)

consists of four equations in four unknowns. Once a locked state

i ili i A

is fpund, stability of the state_ can be tested by perturb_lng t_h&do1 _ <1 A2 Wa ) Aw, = — Aews Az sin(Ag — ®)
variables of (19) and observing whether the perturbations in- Wag L

crease or decrease in time. Perturbing the variables produces _ 2 42 _

a linear system of differential equations with constant coeffi- (1= Aoe™ = A3) 42 = = Aoedy cos(Ad + D)
cients, and when the real parts of the eigenvalues of thissystem (. | 5 Wwa . Ay
are all negative, the state is stable [6]. e 1= 0e Wac Awe =Aoewa Ay sin(A¢ + @)

(22)
V. SYNCHRONIZED STATES
where
Different characteristics of the system are important in dif- 1
ferent situations. For example, the variation of the phase dif- E=—FT—s
ference is important in the design of beam scanning systems 14 Aw,
[7]-[10], and the frequency modulation bandwidth and array Wac

settling time are important in wide-band communication sys-. , . _ o
1Strictly speaking, this is the region where synchronizatizay occur, de-

tems, and thes_e characteristics may be examineq using (3hding on initial conditions. It is the region of existence of stable synchronized
The focus of this paper, however, is on understanding how téetes.
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and with constant ones with the same values without perturbing the
& — tan—L Aw, steady-state solution. Recalling that the locked state contains
- Wac only one frequency component, we can identify the state as a

are, respectively, the coupling strength scale factor and cdnode (i.e., an eigenstate) of the linear system. This modal view-

pling phase that result from frequency-dependent attenuatRNt can be helpful in systems with very small nonlinear con-
and phase delay through the coupling circuit 4@l < 90°. ductances that can, to the first approximation, be ignored. This
The form of (22) is nearly identical to the form given in [3]Ieads to orthonormal modes and such systems are elegantly an-

describing frequency-independent coupling networks, excéfyZed using the average potential theory [12].

that here the coupling parameters are frequency dependent.
The left-hand sides of the equations contain terms not present VI. STABILITY OF SYNCHRONIZED STATES

in the analysis of [3] that account for the loading effects of the A solution to (22) indicates a state exists, but the stability of
coupling circuit on the o.scnlators.. _ the state must be ascertained by perturbing the system and ob-
The concept of coupling magnitude and phase is useful darying whether the perturbations increase or decrease in time.

understanding the effect of the coupling network on the abilitye will perturb the steady-state values by substituting the fol-
of the oscillators to lock and is used extensively in [3]. ThRywing into (19)

main resultis that the tendency to lock increases with increasing
coupling strength and is maximum for zero or 1&@upling Ay — A+ oy
phase. In fact, for=90° of coupling phase, the ability to lock is

minimized. For the present case, we can identify a frequency- Pi = di £ 0
dependent coupling magnitudes(Aw,.) and coupling phase Acw = Aca + Ccx
®(Aw,) and can immediately see that these quantities depend Acy = Acy + vy (23)

on the location of the steady-state frequencyelative to the
coupling circuit passband. If the frequengylies at coupling and retaining only first-order terms, wherg, ¢;, etc. are the
circuit resonance, i.ew = w,. — Aw. = 0, the coupling steady-state values for the mode-locked state in question and
strength and phase are both optimized, and the locking tendengy é;, etc. are the infinitesimal perturbations. The resulting
is strongest. AsxAw,/w,. becomes small, coupling becomeslynamic system for the perturbations, called the variational
weak and the coupling phase approach86’, possibly causing system, is shown in (24) at the bottom of this page. All ex-
loss of synchronization. Thus, frequency locking depends crifiressions appearing within the matrix are the time-independent
cally on the proximity of the steady-state frequency to the coualues of the frequency-locked state. As mentioned before, one
pling circuit passband. The frequency is a complicated functisteady-state oscillator phase is arbitrary, thus, wepset 0
of the circuit parameters that we must solve for using (22). BndA¢ = ¢,. This implies that the above system has only five
the following section, we will apply approximate methods tdegrees of freedom and, therefore, one of the eigenvalues is
estimateAw. and use this result to determine how the lockingero. It is possible to reduce the set of equations since they are
region depends on the circuit parameters. linearly dependent, but the coefficients of the remaining system
Solutions to (22) indicate the existence of frequency-lockexte considerably more complicated and the simple coupling
states, but we will briefly pause to consider these steady stasésicture is obscured. Since the above matrix has constant
from the viewpoint of linear circuit theory. As described abovesoefficients, the system is stable when the real parts of all of
the amplitudes and phases must satisfy the frequency-domai@ nonzero eigenvalues are negative.
equations with Kurokawa'’s substitution, which essentially re- We are now prepared to determine the region in the tuning
places the steady-state frequencyith the dynamic quantity plane within which stable frequency locking occurs. Equation
W+ P — j(A/A) for each transfer function (see [11]). In thg22), which determines the existence, and (24), which deter-
steady state, the amplitudds, and phases,, of the oscillators mine stability of locked states, are sufficiently complicated to
are constant, thus, the time derivatives in Kurokawa'’s substittequire computer evaluation of exact solutions. However, for
tion vanish and, therefore, the steady-state system satisfiesrtteny cases, approximations can be made to reduce the com-
frequency-domain transfer functions. Since the amplitudes guexity. In the following section, we will derive simple expres-
constant, we can replace the amplitude-dependent conductarsiess for the values of oscillator tunings that result in stable fre-

wa(l1—=342%2) —A1(Aw, — Aw,) 0 0 Wq 0

a Ao = Awe wa(1— A2) 0 0 0 = o
81 A Ay 8
d | as _ 0 0 wa(1—342) —As(Awy — Aw,) —wq cos(AP)  —w, sin(Ad) Qs
dt | 6, - 0 0 Awyo — Aw, wo(1— A2) o, sin(A¢) o, cos(Ag) s
o P A, 4, o

o —AoWac 0 Aowac CoS(AQ)  —AowacAs sin(Ag) —Wac Aw, o
oy cy

0 —AowacAr AoWae SIN(AP)  Agwac Az cos(Ag) —Aw, e

(24)
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quency locking for various values of coupling strength and cotuinings away from the coupling circuit resonance, and eventu-
pling bandwidth. ally meet the locking region edge. Twice the total chang&dn
at half the maximum value dhw, we will refer to as the width
W, indicated in Fig. 7. SincAw,. = 0 along the line of equally
spaced tunings, the value #f is relatively easy to determine.

In order to simplify the analysis, we will consider cases dflowever, determiningV’ requires knowledge of thaw, vari-
weak, strong, wide-band, and narrow-band coupling separatgfipn as we move away from this line since the rakio./w.,.
and make the appropriate approximations for each case. Takir@g direct bearing oiv.
all of these results together gives us a broad understanding ofhe functional form of the phase difference for equally
the system for a wide range of parameters. In the end, we v@paced tunings is derived from (22) by subtracting the second
compare our approximate expressions for the locking region @Rd fourth equations and settidgo. = 0. The result is
mensions to solutions obtained by computer simulation and will .
find good agreement in all cases. Awo = Awoz — Awol = 2Aowa sin(A¢) (25)

The first difficulty we encounter is that there may be morgnd we can immediately see that solutions cannot exist for
than one solution to (22), each solution corresponding to a dif,,, > 2),w,. Although we cannot easily prove it for the
fel’ent mode Of OSCi”ation. In general, there W|” be thl‘ee Stab@neraj case, Computer simulations Suggest that a necessary
modes for the circuit considered here, one whose frequencyindition for stability is that the phase difference lie between
located near the resonance of the coupling network and the othej® and-+90° for any value of coupling strength or bandwidth,
two whose frequencies are located near each oscillator tuniggd we will assume that this is true. Thus, as the oscillator
The former is the mode of practical interest and only this MO@gnings are moved apart, but the coupling circuit resonance
will be studied in this paper. It has the largest locking regiog maintained exactly halfway between, the phase difference
since its frequency is closest to the coupling circuit passbaffereases until the locking-region boundary is encountered.
and very often itis the only mode excited. The other two modesajong the line of equally spaced tunings, the amplitudes,

are possible only when the oscillators are tuned well within eagfhich are equal in this case, are found from (22) as follows:
other’s and the coupling circuit’'s passbands.

There are two types of tunings for which the mode of interest ) Aw, \2
is relatively easy to analyze. For equal tunings;,; = Aw,s, A=1-A [ 1—4/1- <2)\ » ) . (26)
which corresponds to the diagonal line through the first and third e

quadrants in Fig. 7, one can show using (22) that the phase §ifje amplitude variation across the locking region increases with
ferenceA¢ equals zero and the oscillators will always lock ”‘i’ncreasing coupling strengtk,, but remains close to unity for
matter how far away from the origin we tune. This occurs bga coupling.

cause in-phase oscillation eliminates current flow through thethe functional dependence dfw, can also be found by
C

coupling network and since the oscillators are identically t“”%f?jding the second and fourth equations of (22) as follows:
they will remain in phase in the absence of coupling. How-

ever, one can see in the figure that the Iockiljg region becomes Ao, + 1 Awo e <& _ é) sin(Ag)

very small as we tune far away from the origin so that, prac- 2 A A

. ) o . Aw, =

tically speaking, synchronization will be lost. When the cou- , Wa 1 /A, 1

pling circuit resonance is located exactly between the oscillator 1= Aoe Wae <1 T 9 <A_1 + A_2> COS(Ad’))

tunings,Aw,1 = —Auw,2, Which corresponds to the diagonal ' 27)

line through the second and fourth quadrants, one can show that

Aw,. = 0, which implies maximum coupling strength, optimumrhe amplitudes and the phase difference depend on the oscil-

coupling phase, and equal amplitudes. We will refer to this typator tunings through (22), andw. also appears implicitly in

of tuning as “equally spaced” since all three frequencies areThis complexity forces us to approximate., for specific

equally spaced. The locking region is symmetric about the diases. Since the width of the locking region depends on how

agonal lines of equal and equally spaced tunings. Once we st Aw, changes as we move away from the line of equally

termine the locking region boundary in one quadrant, the entgpaced tunings, we will derive the changeAn,. for a small

region is determined. In the analysis that follows, we will corshange inAw, for a fixed value ofAw,. Referring to Fig. 7,

sider quantities above the line of equal tunings since the phage will move perpendicularly away from the diagonal as indi-

difference is always positive in this region and this simplifiesated. After considerable algebra (see Appendix), the approxi-

the mathematics. mate value foAw, valid near the line of equally spaced tunings
Moving along the line of equally spaced tunings, the quais

tity Aw, = Aw,2 — Aw,1 increases and the total change in

Aw, as we traverse the entire locking region we will call the Aw, =

“height” and denote i (the factor of\/2 in Fig. 7 is required 1—(1— A?)

since the measure indicated is the diagonal length). As we move

away from this line perpendicularly within the locking regionwhere the amplitudel is given by (26). This relation is simple

we move in the direction of even tuning and vary the quantignough to allow us to determine the approximate locking region

Aw, = (1/2) (Aw,1 +Aw,2), which is the “average” oscillator width for cases of practical interest, but the approximations turn

VIl. CASES OFPRACTICAL INTEREST

Aw,

Yo 1 Aw?
Wae 2A%7 — 14, dwowae

(28)




244 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001

out to be surprisingly accurate, as we will show by comparing 5B
them to computer simulations.

Whether we classify a coupling network as “narrow-band” or
“broad-band” depends on the behavior&f,. as the coupling
circuit is tuned relative to the oscillators. This type of tuning
is equivalent, in our analysis, to tuning in the direction perpen-
dicular to the line of equally spaced tunings, where the spacing b Wit
between the oscillators is maintained, but both are tuned rela- g
tive to the coupling circuit resonance. For broad-band coupling, o0 Iarmontiand
we would expect the steady-state frequency to be determined L | .
by the oscillator tunings and not by the coupling circuit, which Wesk -' strong .
implies Aw, ~ Aw, — w =~ (1/2) (w1 + we2). Whereas Conpling { . Cowpling
for narrow-band coupling, we would expect the frequency to
follow the coupling circuit resonance étw. ~ 0 — w &~ woe.  Fig.8. Parameter diagram showing four regions of interest. Coupling strength
These two conditions give us criteria to identify the couplindepends only oi.,, whereas coupling bandwidth depends.gnandA. .
type as broad or narrow. Equation (28) tells us that for suffi-
ciently smallAw,, i.e., asAw,; is tuned sufficiently close to 1) Broad-Band Casew;. > A.w,: Along the line of
Auw,2, that the broad-band condition is satisfied even for smadfjually spaced tunings, one can show that stable solutions exist
wae, Which seems to contradict our usual notion of narrow-baridr all |A¢| < /2, although proof of this will be omitted here.
coupling. If the oscillators are both tuned within the unloadethe height#, found from (25) and shown in Fig. 9(a), is
coupling circuit passband, however, the steady-state frequency
will always remain within this band, thus, this is essentially H = Aw,| = 2)owa. (30)
a “broad-band” condition. Furthermore, the effective couplingihus, the height of the region is proportional to the coupling
depends not on the unloaded coupling bandwidth, but on thgength and oscillator bandwidth. This is a well-known result
loaded bandwidth, which involves the coupling strength and agrat has been derived in previous papers [1].
cillator bandwidths. When the oscillator bandwidths overlap the From (28), broad-band coupling impligsy, ~ Aw,, which
coupling circuit bandwidth, the coupling circuit is more heavilyneans that the steady-state frequency is exactly between the os-
loaded by the oscillators and, hence, the loaed reduced. cillator tunings and is independent of the coupling circuit reso-
We must keep in mind that the definitions of broad-band anthnt frequency. This can be taken as the defining characteristic
narrow-band in the following sections are somewhat arbitratf broad-band coupling. Since the amplitudes are nearly equal to
since the steady-state frequency changes in different parts oftinéty throughout the region, the relation between the phase dif-

Brondbhand

max

locking region. ference and oscillator tunings can be approximated from (22) as
The division of the coupling strength and bandwidth into re- e

gions of weak/strong and narrow/broad coupling are expressed Aw, = 2w, —2— sin(Ag¢). (31)

in graphical form in Fig. 8. The boundaries separating the var- wie + Aw,

ious regions will come directly out of the analysis that followsThus, the locking region boundary consists of the valuesaf
_ whereA¢ = +90° and is plotted in Fig. 9(a). The width of the
A. Weak Coupling=, < 1/2 region whenAw, is half of its maximum value occurs when

If the resistancé. in the coupling network of Fig. 1 becomesAwe = Aw, = wac, as seen from (31). Including the second
large, them\, = 1/R.G, < 1/2 and the oscillator amplitudes term in the denpmlnator of (28) fakw, gives a more accurate
remain close to unity. The question immediately arises as @sult for the width
which terms, if any, in (28) we can neglect and under what con- V3
ditions. Using the maximum value dw, from (25) we have, W=2 AWO|A%:(1/2)H = 2Wae =21 1= o AoWa.
using (26), the following:

(32)
Awely = Awo . (29) The case of a resistive coupling circuit can be found by let-
11— Ya + As W ting the coupling circuit bandwidth approach infinity in (30) and
“Wae 1= X, Wae (32). The resultis an infinite locking region that follows the line

. . ) ) ) . of equal oscillator tunings, as we expect from physical consid-
and since\, is small, the third term in the denominator is alwayg t?ons g P phy

much less than the second and, therefore, can be neglected. Narrow-Band Casews. < Aw,: We now consider

the edge of the locking region, when the second term is mug%a" coupling circuit bandwidths. The quantify. near the

less than unity, the coupling circuitis broad-band, and as unitynlﬁe of equally spaced tunings is found from (28) to be

approachedAw, blows up. This behavior is not what we would

expect for narrow-band coupling circuits, as discussed in the ~ Aw, 33)
previous section, and causes loss of lock fairly close to the line cT
. )\owa AWo
of equally spaced tunings. The boundary for narrow-band versus 1——— | 1—4/1-— N
Wac oWa,

broad-band coupling can be takeruas = A,w,.
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eral existence criterion thakw, < 2A\,w,. Using these two
=i, criteria together, we find that this new stability boundary ex-
ists only forw,. < A,w, and above this value of coupling
bandwidth the general existence criterion applies. Assuming the
former condition applies, the stability region is found, at least
approximately, using

Wenk Coupling, &,=<1/2
Hroadbanc, o _5=>& e

=2l
= am -3

wie
Awo = 2)\0(4)(1 m
' with Aw. given in (33). To find the width, we find
i 2Awo|aw,=(1/2yr Which, as for the previous case, occurs
at Aw. = w,e. Solving for the width gives

3
W =2 Bwoly, _1jon =2 <1 - 8—\@) Wac.  (36)

Fig. 9(b) shows the approximate shape of the locking re-
gion for weak- and narrow-coupling bandwidth. The region is
much thinner near the edge of the odd tuning boundary due to
the increased sensitivity akw, to changes imAw, near this

sin(Adg) (35)

@

Weak Coupling, #,<<1/2

i, I

Warrcowband, o

boundary.

If we include the third term in the denominator of (28) we
find that, for values of\, close to, but less than unity, the de-
nominator becomes zero a second time, and for valués.Qf
greater than this critical value, the locked states are stable once

X ."'\._ - £ . . . .
| e again. Thus, two new locking regions appear and are discon-

\ :?%4/ nected from the main region [they are shown as dotted regions
"x_ i

in Fig. 9(b)]. In this analysis, however, we will limit ourselves to
By B y B. Strong Coupling—=, > 1/2

small coupling parameters for which case these additional sta-
bility regions do not exist.

B -+ ",
fie \Hh ;! As the coupling strength, is increased, the amplitudes de-
""“"_'ff"f"""' crease considerably as we traverse the locking region in the di-
:{“"" e rection of equally spaced tunings. The physical reason for this
LR

is that, as the coupling resistét, is reduced, the power dissi-
pated in it increases. The oscillator conductances must make up
() this power loss by becoming more negative, which is achieved
Fig. 9. Dimensions of the locking region for weakly coupled oscillators. ()y amplitude reduction. However, power dissipation in the cou-
e o e v oG netiork requires a phase difference to exist between the
bounded by loss of stability due to high sensitivity of the steady-state frequer§Cillators, and this phase difference increases as we traverse the
with respect to tuning variations. The additional locking regions appear ftocking region. If either of the amplitudes drops too far below
values ofA, near, but below, unity. unity, the system becomes unstable and locking is lost. It is dif-
ficult to determine exactly when this occurs, but we can find the
Near the center of the locking region, which is for small,, approximate amplitude boundary from the variational system
Aw. ~ Aw,, and we see the same behavior as in the previogs),
case. However, aAw, increases, the denominator in (33) de- The variational system consists of three second-order sub-
creases, andw, becomes much more sensitive to tuning variaystems, the three diagonal blocks, and are coupled through
tions. Computer simulations show that the value\af, which  the off diagonal blocks. If no coupling existed, then stability
causes the denominator to vanish is (approximately) a stabil§ythe system would be insured if each of the three subsystems
boundary, and for values dfw,, for which Aw, is negative, the were stable. The coupling circuit is always stable since it con-
system is not stable. The stability boundary and, therefore, tfagns some nonzero positive resistance, but the subcircuits repre-
height of the locking region, is found by setting the denominatgenting the oscillators will become unstable if either amplitude
of (33) equal to zero drops excessively since low amplitudes imply net negative re-
sistance. One can show that the matrix of coefficients of each
(34) oscillator subcircuit has a positive determinant along the line of
equal tunings when the coupling coefficiext is greater than
For coupling bandwidths abo&\,w, this stability boundary unity. This implies that stability is determined by the trace of
does not exist. Below this threshold, we must also meet the géime matrix. Applying this criterion to each diagonal submatrix

wac

C 2Dwa

H= Aw,] =24/ 2A WeWae 4 /1

max
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in the variational system gives conditions for stability in the un-
coupled case, but which we assume hold approximately in the
general case

Srong Coupling, A>>1/2 +.40,
Broadband, o, >k o,

1 37 H =207 1 -
7 (37) |
This means that if either amplitude drops belay/2, the
system will become unstable. This approximate stability
condition is surprisingly accurate for most values of coupling
strength and bandwidth, and becomes inaccurate only wher
these parameters both become quite large. Even in this case
however, the dimensions of the locking region given below are
fairly accurate.

For strongly coupled oscillators, the boundaries of the locking
region can be approximated as the locus of points where eithel
oscillator amplitude id /v/2. Along the line of equally spaced 1
tunings, the value af\w, that causes the amplitudes to assume
this value can be found from (26) and is

Ay and A >

N s i i
Strong Coupling, #7=175 .

/ 1 1 : ;
H = Awol oy = 2V Aowa /1 — TEVE for A, < 3 Warrowhand, o << la

(38)

One important consequence is that, for a coupling strekgth
1/2, the locking-region height is maximized while still allowing
the phase differencA¢ to vary 180 over the locking region.
This is important for beam-scanning systems where the designel
wishes to maximize the total phase variation and the locking
range simultaneously.

If the coupling strength is sufficiently strong, the width of
the region will also be determined by the amplitude criterion of
(37). To estimate the rate of decrease of the amplitude away from
the line of equally spaced tunings, we resort to a perturbation
analysis, not derived here for the sake of brevity. The results
show that if we move from this line in the direction of increasing
Auw,, that the amplitude of oscillator | will diminish according (b)
to

i}

Fig. 10. Dimensions of the locking region for strongly coupled oscillators.
Aw. Aw (a) For broad-band coupling, the region is large, but increaseglas (b)
_ 9 ¢ (39) Narrow-band case shows large region width as oscillator tunings are moved
4wawaC()\o -1+ 2A2) apart, but remains narrow when oscillators are tuned within the coupling circuit
passband.

whereA is given by (26). We will assume strong coupling, i.e.,
Ao > 2A% — 1, and simplify the denominator. To find the widththe resonant frequency of the coupling network. Using the

a=afs

of the locking region, we will evaluate the amplitudesab, =  above result at the maximum value A, given by (38), and
(1/2)Awo|max and find the value of\w, that givesA = 1/V2.  assuming\, > 1, we can say that the boundary for weak
First, however, we must determize... versus narrow-band coupling is@t. = (1/2)w,.

Using (26) fpr the amplitude for odd tunings and noting that 1) Broad-Band Casews;. > (1/2)w,: In this section, we
for large coupling strengths we can expand the squareoat, will assume thatv,. > (1/2)w, SO thatAw, ~ Aw,. Using

from (28) is approximately this result in (39) for the amplitude of oscillator | and setting the
amplitude tol /v/2, we find that the width of the locking region
Aw, i
Aw, = Z . 40) 'S
W,
__—"o 1
I oo W s <1 - E) Vowae. (41)

This shows that forAw, < 2v/2\w,w.., the steady-state The locking region for this case, shown in Fig. 10(a), looks sim-
frequency remains halfway between the two oscillatordar to the case of weak and broad-band coupling, but the height
as in the case of weak broad-band coupling, but fgrows more slowly with increasing coupling strengthand the
Aw, > 2¢/2Xwqw,, the steady-state frequency followswidth is no longer constant with,,.
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Fig. 11. Comparison of approximate formulas to computer simulations f&g- 12. E:omparis_on of approximate formulas to computer simulations for
“high”-Q coupling circuit. moderate”€) coupling circuit.

2) Narrow-Band Casew;. < (1/2)w,: We now have were computed for three different values of coupling bandwidth,
Aw, = (8\oWawae/Aw?) Aw, and using this result in (39) w,. = 0.005, 0.05, 0.5 as functions of the coupling strength,
and setting the amplitude tb/+/2, the width of the locking and the simulation results and the results calculated from the ap-
region is proximate expressions are shown in Figs. 11-13.

1
W =~ <1 — ﬁ) V AW (42) IX. CONCLUSION

The locking region for this case is shown in Fig. 10(b), where The theory develop_ed n thls paper allows one to derive a
nonlinear system of differential equations for oscillators cou-

we can see that the region gets slightly wider as we move alo i .
the line of equally spaced tunings. The reason for this behavﬁ%d through frequency-dependent networks, and shows explic

is that as the oscillators are tuned far apart, they influence tI Xtth.e approximations mvolveql n applylng Kurolfawa s SUb'.
itution. The theory shows the limitations of a previous analysis

steady-sta_te fr_equency_ less. Thus, the frequgncy can TOHQW %}ethe authors for broad-band coupling networks and then ap-
coupling circuit bandwidth and strong coupling is maintaine

. plies the theory to the case of two oscillators coupled through
over a wide range. : .

a frequency-dependent network. Simple approximate formulas
for the dimensions of the locking region are derived and plotted
against values determined by computer simulation. The analysis

To verify the accuracy of the above expressions for the heighiggests specific boundaries that separate the strong/weak and
and width of the locking region, MathCAD was used to obtainarrow-band/broad-band coupling regions. An important case
solutions to (22) and to compute the eigenvalues of the varia-practical interest is when two oscillators are coupled through
tional system (24) for various circuit parameters. In additiom, high<) cavity. For weak coupling, the analysis shows that the
the nonlinear differential equations (19) were also numericallgcking region is quite small; the region width is on the order
integrated to verify that the steady states and eigenvalues fafahe unloaded bandwidth of the coupling circuit. For strong
particular set of parameters were correct. The coupling-circaibupling, oscillation near the resonant frequency of the cavity
resonant frequency and oscillator bandwidths were kept carecurs primarily when the cavity resonance is located between
stant atw,. = 10 andw, = 0.1. The heightHd and widthiW  the two oscillator tunings and increases as the oscillators are

VIII. COMPUTER SIMULATIONS
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Subtracting the second fourth equations of (22), we arrive at an

- © =10 5 expression for the difference between oscillator tunings
_‘i 081 ®,=0.1
= 0,=0.5 i Awo = Aoz = Aol
° 0.6+ Simulation A A
= Approximate =\oe2w, 224 sin(Adg)
= A A
=}
= 044 A A A
2 SEE (2 - cos(Ag)| (44)
~ Wac Al AQ
w0 Weak' y Snong
= 021 Coupling 2 Coupling and adding them gives an expressionfap,
-l
: ‘—E—v"'ﬂ/ : _ Aw, 1 /A A
2 Com 0.1 1 10 Awe =By + A2, | = 4 = (22 = 21 Y sin(Ag)

Wac 2 Al AQ

%o, log scale 1A ) )
We 2 1

—= — 4+ — Ap)| .
= ] 2 Wac <A1 + AQ) COS( ¢):|
"~ 5 0,=10 . (45)
= ,=0.1 s
; i ©,.=0.5 S As we varyAw, an infinitesimal amounfAw, away from zero,
- Simulation ¢ many of the quantities in the above equations will change. For
e 3 g Approximate example Aw,.. is nominally zero (this can be taken as the defi-
o nition of the mode of interest), but after this perturbation, it will
“ 21 have a nonzero value. The quantityhowever, depends on the
o square ofAw. [see (22)] thus, to the first ordef,will remain
< 1 2] Stron unity.
ht g’::;ing Couplging The equations are perturbed by implicit differentiation and
= 0001 0'1 '1 1b: any unperturbed terms will be evaluated on the lixe, = 0

and, as a result, some may vanish. Along this line, (43)—(45)
take on particularly simple forms, and result in the amplitude
expression of (26) and the following relations for the phase dif-

Fig. 13. Comparison of approximate formulas to computer simulations fé@rence:
“low”- @ coupling circuit.

s, log scale

Aw
. A — o
sin(Ag) s
tuned apart from one another. For this case, the phase difference cos(A¢) =1 — 1 (1— A?). (46)
between the oscillators remains neaafd loss of synchroniza- o

ion i lar mpli variations. . N .
tion is due to large amplitude variations These relations help simplify the form of the mathematics that

follows.

Implicitly differentiating the amplitude, (43) gives

APPENDIX
DERIVATION OF AMPLITUDES AND Aw, NEAR LINE OF (1= A, — 3A2) dA,
EQUALLY SPACED FREQUENCIES

=-)\, |:dA2 cos(Ag) — A <dA¢ -

dAw,

)]

In this section, we derive approximate expressionsXar,
and the amplitudesi, and A, that are valid near the line of (1 _ X  —342)4d4,
equally spaced tunings as we tune perpendicularly away from

ac

dAw: \ .
that line, as indicated by the small arrow in Fig. 7. The firstand = —Xo |:dA1 cos(A¢) — A <dA</) + ) sm(Af/))}
third equations of (22) relate the oscillator amplitudes to various a¢ (47)
guantities and are repeated as follows with the coupling phase

expanded: "
P where the unperturbed quantities have been evaluated along

Aw, = 0. Adding and subtracting these equations and using

the relations (46) gives
2 2 2 Aw, .
(1-Xdoe"—A7)A; =—)e” Ax | cos(AP) + sin(Ag)
A dAy + dA;, = — A;;’l" dAG
(1=Xpe2—AD Ay = —Ne Ay <COS(A¢) Si—" sm(A¢)> . A Ao dA
e 23 dAy — dA, = — 0T 49
(43) 242 + X, — 1 2woWac



LYNCH AND YORK: SYNCHRONIZATION OF OSCILLATORS COUPLED THROUGH NARROW-BAND NETWORKS

Applying the same analysis technique to (44), which we main-[2]
tain at zero, gives

dAw, =0 3l
=A d éJré in(A¢) + 2cos(A¢p) dA¢

= Aowq AT sin cos [4]

= Aoy {% (dA; 4+ dAy) sin(A¢) + 2cos(Ag) dAd)} . (5]

(49) [

Using the first of (48), the above expression becomes 17l

2 . 2
<Z sin(Ag) — Ao, COS(A(/))) (dA; +dAy) =0. (50) (8]

The first parenthetic quantity is not generally zero, thus, we must[gl
havedA; + dAs = 0 and, from (48), it follows thatlA¢ = 0.
Using these results with the second equation of (48), we can
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